Fekete lyukak

2015.02.23 19:25
Egy fekete lyuk körüli forró plazmábólálló akkréciós korong művészi ábrázolása. A kép közepén levő sötét gömb a fekete lyuk eseményhorizontja, ekörül kering az akkréciós korong. Az eseményhorizont pólusából kiinduló fényes nyúlványokmágneses erővonalak. (NASA)
 
Fekete lyuk gravitációs lencsehatásaszimulált animáción
 
Az NGC 7052 elliptikus galaxisközéppontjában lévő, 300 milliónaptömegűszupermasszív fekete lyuk és a körülötte lévő akkréciós korong a HSTfelvételé
Fekete lyuk
 
 
 
 
 
 
 
 
Egy fekete lyuk körüli forró plazmábólálló akkréciós korong művészi ábrázolása. A kép közepén levő sötét gömb a fekete lyuk eseményhorizontja, ekörül kering az akkréciós korong. Az eseményhorizont pólusából kiinduló fényes nyúlványokmágneses erővonalak. (NASA)
 
 
Fekete lyuk gravitációs lencsehatásaszimulált animáción
 
 
Az NGC 7052 elliptikus galaxisközéppontjában lévő, 300 milliónaptömegű, szupermasszív fekete lyuk és a körülötte lévő akkréciós korong a HSTfelvételén
A fekete lyuk a téridő olyan tartománya, ahonnan az erős gravitáció miatt semmi, még a fény sem tud távozni. Félklasszikus szemléltetése szerint olyan égitest, amelynél a felszínre vonatkoztatott szökési sebesség eléri vagy meghaladja a fénysebesség értékét.[1] Azonban a fekete lyukban - az eseményhorizont mögött - nincs valódi égitest: a fekete lyuknak nincs belső szerkezete, kifelé pedig csak a tömege, töltése és perdülete nyilvánul meg (kopaszsági elv).
Létezésüket az általános relativitáselmélet támasztja alá. Fekete lyuk keletkezik akkor, ha egy véges tömeg a gravitációs összeomlásnak nevezett folyamat során egy kritikus értéknél kisebb térfogatba tömörül össze. Ekkor az anyag összehúzódását okozó gravitációs erő minden más anyagi erőnél nagyobb lesz, s az anyag egyetlen pontba húzódik össze. Ebben a pontban egyes kutatók szerint bizonyos fizikai mennyiségek (sűrűség, téridőgörbület) végtelenné válnak (lásd: gravitációs szingularitás). A szingularitást körülvevő térrészben a gravitáció olyan erős, hogy onnan sem anyag, sem fény nem szabadulhat ki. E gömb alakú térrész határfelülete az eseményhorizont, sugara az ún. Schwarzschild-sugár. Az eseményhorizonton belülre kerülő anyag vagy sugárzás belezuhan a szingularitásba.
A fekete lyukak létezése mind elméletileg, mind csillagászati megfigyelésekkel jól alátámasztott (például Chandra űrtávcső). A lyuk elnevezés alatt nem a szokásos értelemben vett lyukat kell érteni, inkább a világűr egy részét, ami mindent elnyel, és ahonnan semmi nem tud visszatérni.
Másképpen, a fekete lyuk olyan égitest, mely nagy tömege ellenére elég kicsi, hogy elférjen az általa létrehozott eseményhorizonton belül. Ebben az esetben ugyanis az égitest minden pontja az eseményhorizonton belül van, tehát az eseményhorizonton kívülről nem látható. Nagyobb fekete lyuk sűrűsége kisebb lehet, mint a vízé vagy a levegőé.[2]
 
 
Története
John Michell (1724–1793) Newton gravitációs elméletét alkalmazva rámutatott 1783-ban,[3] hogy egy elegendően nagy tömegű és kis méretű csillagnak olyan erős lenne a gravitációs tere, hogy a felszínéről semmi sem tudna elszakadni. A fény korpuszkuláris elméletét és Newton gravitációs elméletét felhasználva kiszámította, hogy a Nap sűrűségét feltételezve ennek a csillagnak a sugara 486-szorosa lenne a Napénak, a tömege pedig annak 120 milliószorosa. Ez volt az első említése egy olyan típusú csillagnak, aminek jóval később a „fekete lyuk” nevet adták.[4]
1796-ban Laplace tőle függetlenül ugyanerre jött rá.
Karl Schwarzschild német csillagász 1916-ban, miközben a német hadseregben az első világháborúban az orosz fronton harcolt, megoldotta az Einstein általános relativitáselméletérevonatkozó egyenletet (lásd. Schwarzschild-metrika). Schwarzschild már 1900-ban (amikor 27 éves volt) benyújtott a német csillagászati társaság felé egy tanulmányt, amiben azt fejtegette, hogy a tér nem közönséges háromdimenziós dobozként viselkedik, hanem a gravitáció által furcsa módon „görbül”. Einstein hasonló megfogalmazást használt 1905-ben. Schwarzschild azt állapította meg tisztán matematikai úton, hogy ha egy csillag a saját gravitációja által egyre összébb húzódik, akkor a szökési sebesség egyre nagyobb lesz, míg eléri a fény sebességét, vagyis az ilyen objektum közeléből a fény sem tud távozni. Az „eseményhorizont” fogalmát is Schwarzschild írta le, 1916-ban. Ő maga nem hitt benne, hogy mindez fizikailag is létezhet.
Ötven évvel később a csillagászok kezdték komolyabban venni Schwarzschild elképzelését a „láthatatlan csillag”-ról.
A fekete lyuk („black hole”) kifejezést John Archibald Wheeler tette ismertté egy 1967-es New York-i konferencián, bár ő maga mindig hangsúlyozta, hogy azt valaki más javasolta neki.
1971-ben Wheeler csoportjának számításai azt valószínűsítették, hogy a Cygnus X-1 röntgencsillag egy fekete lyuk körül kering.[5] (valójában maga a Cygnus X-1 egy fekete lyuk).
A fekete lyukak fizikai tulajdonságai[szerkesztés | forrásszöveg szerkesztése]
 
 
A fekete lyuk körül akkréciós korongotképez a körülötte keringő fősorozaticsillagból belé áramló anyag (az akkréciós korong nem ér el az eseményhorizontig, a legbelső stabil körpálya (ISCO) elérése után belezuhan a lyukba). Az akkréciós korongra merőlegesen, annak két oldalánpoláris jetek alakulnak ki.
Mivel a beléjük zuhanó anyag gyakorlatilag elveszíti szerkezetét, a fekete lyukaknak mindössze három, egymástól független tulajdonságuk van: tömegük, forgási sebességük és (elméletileg előrejelzett, a természetben elő nem forduló) elektromos töltésük.
A fekete lyukak tömege
Egyes, kísérletileg még nem bizonyított elméletek szerint bizonyos magfizikai folyamatok során mikroszkopikus fekete lyukak keletkezhetnek.
Nagy tömegű csillagok egyik lehetséges végállapotaként, szupernóva-robbanás után a csillagmaradvány tömegétől függően fekete lyuk vagy neutroncsillag keletkezhet. A fekete lyuk keletkezéséhez elég nagy tömegű csillag szükséges, hogy még a belőle keletkezett neutroncsillag is összeroppanjon. Ez a tömeg jelenlegi ismereteink szerint valahol 1,7-2,7 naptömegközött van, a legkisebb ismert tömegű fekete lyuk 3,8 (±0,5) naptömegű.[6] Ha viszont a csillag tömege túl nagy (20-40 naptömeg feletti), akkor még a szupernóva-robbanás előtt acsillagszéllel annyi anyagot veszít, hogy a maradék tömege nem elég a fekete lyuk létrejöttéhez, így nagyon gyorsan forgó és nagyon erős mágneses térrel rendelkező neutroncsillagok,magnetárok jönnek létre.
Több kisebb fekete lyuk ütközésével jöhetnek létre a sokáig keresett köztes tömegű fekete lyukak, ezek tömege néhány száz-néhány ezer naptömeg. Egyelőre nagyon kevés ilyen fekete lyukat ismerünk, az NGC 4472 galaxis egyik gömbhalmazában (valószínűleg a közepén) van ilyen fekete lyuk.[7] Az NGC 5408 galaxisban lévő egyik ultrafényes röntgenforrás(ULX, Ultra Luminous X-ray source) tömegét egy új módszerrel megmérve 2000 naptömegnyinek adódott[8], így ez is ebbe a ritka csoportjába tartozik a fekete lyukaknak. Az ultrafényes röntgenforrásokat általában a kutatók a köztes tömegű fekete lyukakkal hozzák összefüggésbe.
Egyes galaxisok középpontja (a miénk is) tartalmaz nagyon nagy tömegű (több millió naptömegű) szupermasszív fekete lyukat.
A fekete lyukak tömegének mérése
A fekete lyukak forgásaA fekete lyukak tömegét akkor tudjuk pontosan meghatározni, ha a körülötte keringő csillagközi anyagfelhők, csillaghalmazok vagy csillagok mozgása, azaz pályamérete és sebessége is megmérhető.
A fekete lyukak forgási sebességéről nagyon keveset tudunk, egyelőre csak néhány égitestről rendelkezünk adatokkal. A forgás sebességét a*-gal jelöljük, ennek értéke 0, ha a fekete lyuk nem forog, 1 pedig akkor, ha az égitest az általános relativitáselmélet által megengedett legnagyobb sebességgel forog. Az eddig megmért forgási sebességű fekete lyukak esetében a* mindig 0,95 fölötti értéknek adódott, például a GRS 1915+105 jelű objektumnál a* 0,98, ez másodpercenként több mint 950 fordulatot jelent.[9]
A fekete lyukak forgási sebességének mérése
A megfigyelhető fekete lyukakba az akkréciós korongon keresztül folyamatosan anyag áramlik (ennek sugárzása árulja el számunkra a fekete lyuk létét). Az izzó gáz egyre közelebb kerül az égitesthez, majd belezuhan. A zuhanás előtti, legbelső stabil körpálya (ISCO, Innermost Stable Circular Orbit), melyen az anyag keringhet, összefüggésben van a lyuk forgási sebességével, mert a fekete lyuk forgása közben magával rántja a téridő-kontinuumegy darabját is (ez az egyetlen olyan fizikai hatás a külvilágra, mely a forgással van kapcsolatban). A legbelső stabil körpálya sugarának méréséből következtethetünk a fekete lyuk forgási sebességére, minél gyorsabban forog a lyuk, annál kisebb ez a sugár (lyukkal forgó téridő mintegy magával rántja a befelé áramló anyagot, emiatt az gyorsabban keringve a fekete lyukhoz sokkal közelebb juthat anélkül, hogy belezuhanna).
A legbelső stabil körpálya sugarát a benne áramló anyag hőmérsékletének (erre az általa kibocsátott röntgensugárzás színképének elemzésével következtetnek), vagy a benne lévő anyag egyes jellegzetes színképvonalaieltolódásának (melyet a gravitációs vöröseltolódás okoz) mérésével végzik.
A fekete lyukak párolgása
 
 
A Cygnus X-1, egy kettőscsillag egyik komponense az egyik elsőnek azonosított fekete lyuk (és egyben fényesröntgenforrás) és a körülötte lévő akkréciós korong, fantáziarajzon
Stephen Hawking kimutatta 1974-ben, hogy a fekete lyuk környezetében a lyuk tömegének rovására részecskék keletkezhetnek (az energia átalakul anyaggá), ezáltal a lyuk tömege csökkenhet. Ez az anyagkeletkezés annál intenzívebb, minél kisebb a lyuk tömege. A tudósról Hawking-sugárzásnak elnevezett jelenség révén, ahogy a lyuk egyre kisebbé válik, úgy lesz az anyagkibocsátás egyre erősebb, míg végül a lyuk robbanásszerű hevességgel eltűnik. A fekete lyukba belekerülő anyag és sugárzás viszont a lyuk tömegét növeli. Ez ellensúlyozza az anyagkibocsátást, egészen addig, amíg a világegyetem hőmérséklete (2,7 kelvines kozmikus mikrohullámú háttérsugárzás) a fekete lyuk felszíni hőmérséklete felett van (minél nagyobb tömegű a fekete lyuk, annál alacsonyabb, de – a viszonylag kis méreteket leszámítva – jóval 2,7 kelvin alatt, közel 0-hoz). Ez esetben viszonylag kis méret alatt azt kell érteni, hogy jelenleg holdunk tömegének megfelelő Schwarzschild-sugárral rendelkező fekete lyuk (azaz Holdunk tömegével megegyező tömegű fekete lyuk) van termikus egyensúlyban, ez az a méret, ahol ugyanannyi sugárzást bocsát ki a fekete lyuk, mint amennyit a háttérsugárzásból elnyelni képes (felszíni hőmérséklete éppen 2,7 kelvin). Ennél kisebb tömeg esetén a fekete lyuk tömege (amennyiben csillagközi gáz, por, csillagfény vagy egyéb „pluszban nem táplálja”) a párolgás miatt csökkenni fog, nagyobb tömeg esetén pedig akkor is tovább fog nőni, ha csak a háttérsugárzás táplálja (ha a tömeg úgymond csak egy kicsivel nagyobb a kérdéses határnál, akkor a tömegnövekedés ideje is kicsi lesz, mivel a háttérsugárzás hőmérséklete gyorsabban csökken, mint ahogy a csupán háttérsugárzás által táplált lyuk felszíni hőmérséklete csökkenni tud a tömegnövekedés hatására). A világegyetem tágulása miatt a világegyetem hőmérséklete folyamatosan csökken, nullához konvergál (örökké táguló világegyetem esetén), ami pedig azt jelenti, hogy egy idő után bármely fekete lyuk felszíni hőmérsékleténél alacsonyabb lesz, azaz egy idő után minden fekete lyuk tömege csökkenni kezd, végül teljesen elpárolog (örökké táguló világegyetem esetén; azért itt is előfordulhat elfajuló eset, például hiperbolikusan gyorsuló tágulás esetén a világegyetem mérete véges időn belül végtelen nagyra nőhet, és nem biztos, hogy a fekete lyuknak lesz ideje elpárologni, mielőtt a világegyetem „szétspriccel a végtelenbe…”; ha ez megtörténik, többé nincs értelme térről és időről beszélni, ahogy a kérdéses fekete lyukról sem), zárt világegyetem esetében a helyzet a tágulás, majd az ezt követő összehúzódás paramétereitől, illetve a fekete lyuk tömegétől függ).